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Text 

Brain stimulation has been a potential nonpharmacological therapeutic intervention for 

a range of brain diseases. Different neuromodulation methods have been developed have been 

developed and applied to human brain imaging. The skull compartment exerts a strong 

influence on the imaging and stimulation results, suggesting the need to accurately examine its 

geometry and alterations in the population. Thinning and geometric changes in the skull may 

also occur due to aging and disease. Optimization of the probe location on the head for 

neuroimaging/brain simulation thus has added value in various neurostimulation and imaging 

studies, such as simulation ultrasonic wave propagation and acoustic transmission [1]. 

Computed tomography (CT) imaging has been used to investigate the changes in bone 

thickness. However, radiation exposure, particularly to the brain, is not ideal for volunteers or 

patients. Analysis using routine structural magnetic resonance imaging (MRI) data is a feasible 

alternative. Structural MRI-based automatic skull reconstruction from images was challenging, 

as compact bone has a very low signal in MRI. Recent efforts have enabled the development 

of accurate and automatic head segmentation/skull stripping pipelines from MRI for 

individualized head modelling [2, 3], which is not immediately applicable for skull analysis. 

Moreover, cortical thinning has been found to be associated with amyloid-beta and tau 

accumulation in Alzheimer’s disease (AD) and prodromal AD, as well as in clinically normal 

older adults, and associated with increasing age. The changes in skull thickness and scalp-to-

cortical distance (SCD) with age and sex have not been evaluated in a large cohort, which is 

relevant in brain stimulation applications. 

Here, we developed an open-source fully automated pipeline BrainCalculator for the 

computation of the skull thickness map, and SCD, based on structural T1-weighted (T1w) MRI 

data from the Alzheimer’s Disease Neuroimaging-Initiative (ADNI) [4] (available at 

https://github.com/Junha0Zhang/BrainCalculator). Next we assessed MRI-based skull 
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thickness in a group of 407 cognitively normal older adults (71.9±8.0 years, 60.2% female) by 

using the developed pipeline (STable.1). 

The original T1w MRI file of the human head (.nii) from ADNI (Fig.1a) was processed 

by using BS Skullfinder to generate 3D meshes (.obj) for the cortical surface, scalp surface, 

and inner and outer skull surface (Figs.1b-e). All datasets were registered to the same 

coordinate. Brain volume was calculated based on the cortex surface of the brain (Fig.1b). 

Next, uniformly sampled points from the four surfaces for the cortex, scalp, inner and outer 

table (Figs.1b-e) were used to generate corresponding point clouds(.pcd) (Figs.1f-i). Earlier 

studies have used an exhaustive neighbor search of points [5]. To efficiently search for the 

nearest points, we used the K-dimensional tree algorithm to speed up the computation 

process[6]. For every point in the scalp and outer skull surface (Figs.1g, i), the closest point in 

its paired data (cortex/inner skull) was identified (Fig.1k). Next, we computed the skull 

thickness (Fig.1j) and SCD maps (Fig.1l) for all the selected points and regions. The skull 

thickness map is visualized, and the value is reported when the user selects the location on the 

skull by a cursor. The whole pipeline takes approximately 8 minutes for one dataset as tested 

on Dell-XPS15 (Intel i7-9750H CPU). 

Next, we compared different open-source packages in the suitability and performance 

for automatic (without manual correction) skull segmentation and SCD computation. We 

demonstrated the utility of our BS-Skullfinder preprocessing based pipeline [7, 8] along with 

FSL-Brain Extraction Tool (FSL) 2 [9] and SPM12-based unified segmentation [10] for 

computing the skull meshes and thickness maps. SPM also provided probability maps for 

cerebral spinal fluid, white matter and gray matter, however did not provide scalp map. To 

evaluate the performance and compare the similarity of different analysis methods, we 

computed the Dice coefficients for each of the labels and the CT pair. CT data were used as 

ground truth. The Dice coefficient measures the similarity of two sets of data. Higher similarity 
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of the segmentation to the CT reference is indicated by the closeness to 1.0. We did not include 

the lower parts of the skull in the comparison, as they were either noisy or absent in the 

processing. We found that the three methods BS, FSL, and SPM generated globally similar 

segmentations for the skull and scalp mask using the T1w MRI data (STable.2, SFig.1). 

However, mismatches in the temporal bone, sphenoid bone and occipital bone were observed 

in the automatically processed data based on FSL BET segmentation when overlaying the 

segmentation with CT (SFigs.1c,g). This mismatch could be observed in the skull thickness 

map generated based on FSL BET segmentation (SFigs.1i,j). Given the importance of the 

temporal bone, sphenoid bone and occipital bone regions in focused ultrasound stimulation and 

other neurostimulation approaches, BS-based segmentation was chosen in our automatic 

pipeline. 

Next, we applied our analysis pipeline to compute the skull thickness map for the 407 

T1w MR datasets from ADNI (STable.3, SFigs.2). There was a trend of higher skull thickness 

in male participants than in female participants, although the difference was not statistically 

significant. Significant skull thickening was found in the temporal bone of male participants in 

the 71-80-year-old group compared to the 60-70-year-old group. In the sphenoid bone of 

female participants, there was a slight increase associated with age (r=0.1734,p=0.0066). In 

other regions of skull bones, no correlation between age and skull thickness was detected in 

either sex. The magnitude of skull thickening was higher in the sphenoid bone and occipital 

bone of females than in those of males. We further computed SCD map for the same ADNI 

cohort (STable.4, SFig.3). We observed that in all the regions, there was an increased SCD 

associated with age in both the male and female groups. The slope of the increase in SCD was 

steeper in the female than in males in the temporal cortex and was comparable in other brain 

regions (STable.4). 

In conclusion, we developed an open-source skull thickness and SCD analysis pipeline 
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for structural MR brain scans and demonstrated the association between skull thickness and 

SCD with age. The automatic efficient computation toolbox for skull thickness and SCD map 

analysis is potentially useful for personalized neurostimulation planning. 
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Fig. 1 
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Figure Legend 

Fig. 1 Analysis pipeline for human skull thickness and scalp-to-cortex distance (SCD) 

using T1w MRI data. (a) Original MRI file and zoom-in-view summarizing position of b-k; 

(b-i) Surfaces and corresponding point clouds for (b, f) cortex, (c, g) scalp, (d, h) inner skull 

and (e, i) outer skull; (j) SCD map. Scale bar = 9-18 mm (blue‒red); (k) Zoomed-in view of 

the skull (in a) indicating the inner surface (red dots) and outer surface (blue dots). 𝑑𝑖 is the 𝑖𝑡ℎ 

nearest point on the inner surface to each point on the outer surface (arrow line). (l) Skull 

thickness map. Scale bar = 1-10 mm (blue‒red). Representative images based on T1w MR from 

one 79-year-old male. 
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